
NASA
Technical
Paper
3285

April 1993

Description of Alpha-Nucleus
Interaction Cross Sections for
Cosmic Ray Shielding Studies

Francis A. Cucinotta,
Lawrence W. Townsend,
and John W. Wilson



NASA
Technical
Paper
3285

1993

Description of Alpha-Nucleus
Interaction Cross Sections for
Cosmic Ray Shielding Studies

Francis A. Cucinotta,
Lawrence W. Townsend,
and John W. Wilson
Langley Research Center
Hampton, Virginia



Abstract

Nuclear interactions of high-energy alpha particles with target nu-

clei important for cosmic ray studies are discussed. Models for elas-

tic, quasi-elastic, and breakup reactions are presented and compared

with experimental data. Energy-dependent interaction cross sections

and secondary spectra are presented based on theoretical models and
the limited experimental data base.

1. Introduction

In this paper we consider theoretical models of alpha-nucleus interactions for the purpose
of developing a data base for describing the transport of cosmic ray alpha particles (4He) and
secondary light ions through bulk materials. Alpha (�) particles represent about 10{12 percent of
the primary galactic cosmic ray ux, second only to the hydrogen component, which represents
86{89 percent of the abundance. Interaction cross sections for 4He{1H collisions have long
been of interest (refs. 1{3) in the understanding of the chemical composition of the primary
cosmic radiation because their interaction is the chief mechanism for 2H and 3He productions
which are absent from the primary sources. More recently, the possibility of long-duration
manned missions beyond the Earth's orbit has resulted in an increased e�ort to understand the
possible late and genetic e�ects of galactic cosmic radiation (ref. 4) and to accurately predict
the exposures to be encountered. The large primary alpha component and also the important
secondary alpha component from the fragmentation of heavier elements warrant a study of their
physical interactions in spacecraft materials and tissue.

The internal structure of 4He, which is unique in several aspects, suggests an individual
treatment of the physical interactions. First, this nucleus is the most compact with charge
(matter) radius of 1.67 fm (1.33 fm) in comparison with the lighter nuclei 2H and 3He with
charge (matter) radius of 2.1 fm (1.71 fm) and 1.88 fm (1.45 fm), respectively. The compactness
of 4He is an indication of the large binding energy at about 7 MeV/particle and results in a �rst
excited state far removed from the ground state at about 20 MeV. Similar to the other light
ions with mass number A < 5, no bound excited states occur for 4He. We note that the �rst
excitation level of all other nuclei occurs at only a few MeV. Nuclear correlations of dynamical
content are expected to be enhanced because of this compactness which is, in part, due to the
absence of Pauli exclusion e�ects and to the closed shell structure. The A = 2; 3 nuclei are
now amenable to exact solution for their internal wave functions using realistic nucleon-nucleon
interactions (refs. 5{8). This is not true for 4He, although variational Monte Carlo approaches
have been used (refs. 9{12). Also, nuclear matter or independent particle models used for the
study of heavy ions are expected to fail for 4He where the concept of a mean �eld does not
hold. Finally, the description of nuclear fragmentation for light nuclei will be in terms of a
one-step process of direct reaction, rather than the abrasion-ablation picture used for describing
heavy-ion fragmentation (ref. 13).

The interaction cross sections for alpha pro jectiles consist of the elastic channel, compound
nucleus reactions, stripping and pickup channels, and the fragmentation reactions. For cosmic
ray studies these cross sections are needed over the energy range from a few MeV to above
100A GeV. However, because of the dominance of atomic/molecular interactions at low energies
(including the resulting short range of the ions) and the small primary ux above about 10AGeV,
the energy range from above a few 10's of A MeV to about 10A GeV is most important. The
nuclear absorption cross section imposes an important constraint on the sum of the inelastic
channel cross sections. A second-order solution (refs. 14 and 15) to the coupled channel equations
(refs. 16 and 17) of the optical model in the eikonal approximation has been developed. The
absorption cross sections and elastic scattering distributions for alpha-nucleus collisions are



calculated by using a realistic model for the 4He ground-state one- and two-body densities.

The total scattering cross section is also e valuated.

An important e�ect that results from the large separation energy for the �rst excited state

in 4He is a signi�cant cross section for inelastic reactions with composite nuclei where the alpha

particle remains intact; i.e., the target nucleus fragments while the pro jectile alpha particle does

not fragment. This quasi-elastic type of reaction has been described by the optical model (refs. 18

and 19) and is applied here to estimate the fractional contribution of quasi-elastic processes to

the absorption cross section for common shielding materials.

The fragmentation of light nuclei is often described by a single pole diagram (refs. 20{22)

in which a single nucleon or cluster reacts on the target with the remaining piece of the ion

acting only as a spectator. This type of impulse approximation fails when an extended region of

the kinematical phase space is considered. We have developed an e�ective three-body multiple

scattering approach (refs. 23 and 24) to describe the two-body dissociation of light nuclei on

composite targets. The e�ects of elastic and inelastic fragmentation and �nal-state interactions

are treated in this model. For 4He this model describes the 3H-p, 3He-n, and d-d �nal states.

Interactions of knocked-out clusters with the target are described by the optical model of multiple

scattering, and thus the energy dependence of these 4He fragmentation channels is described.

We apply this model to calculate integrated cross sections and compare the calculations with

available experimental data. Deuteron production cross sections from 3He and 3H projectiles

and the breakup of 2H may also be evaluated in this model.

The two-body dissociation states and the quasi-elastic scattering account for roughly half of

the absorption cross section when meson production is included. At low energies the stripping

reactions are important, but their importance decreases at high energies because the amplitude

involves the dissociation vertex in an energy-dependent manner. Extensive measurements have

been made for pickup on 1H for 4He projectiles. We use the Serber model (refs. 25 and 26) to

obtain a mass number dependent scaling of these experiments. Estimates of compound nucleus

cross sections can be provided from the EVAP-4 code of reference 27 for light-ion projectiles

below 100A MeV. The remainder of the absorption cross section is shared by the �! dpn and

� ! npnp channels. Theoretical models of these reactions are hampered by the complexity of

the many body �nal states and the fact that the vertex functions for these breakup modes have

not been evaluated in any realistic model. We note that semiphenomenological methods have

been used with some success for the �! dpn breakup (ref. 28).

The outline of this paper is as follows: First, the optical model is used to evaluate total,

absorption, and elastic scattering cross sections that are compared with experimental data.

The calculation of the quasi-elastic cross section for inelastically scattered alpha particles is

then described, and predictions for common shielding materials are made. Second, the model

of two-body dissociation of light ions is used to predict energy-dependent fragmentation cross

sections. The Serber model for pickup and stripping is used to estimate these cross sections

for alpha projectiles. Third, and �nally, a survey of the available experimental data is made

and combined with theoretical predictions to give energy-dependent parameterizations of cross

sections for secondary 4He, 3He, 3H, 2H, and 1H in alpha-nucleus collisions. A parameterization

for the energy spectrum of secondaries is also presented.

2. The Elastic Channel and Nuclear Absorption

The evaluation of the nuclear absorption cross section proceeds from the elastic scattering

amplitude and the optical theorem. In the Eikonal coupled channels (ECC) model (refs. 14

and 16), the matrix of scattering amplitudes for all possible projectile-target transitions is given

by

f(q) =
ik

2�
bZ
Z

d2b eiq�b
n
ei

��(b)
�
�1

o
(1)

2



where barred quantities represent matrices and bold quantities represent vectors. Here, b is
the impact parameter vector, q is the momentum transfer vector, and k is the projectile-target

relative wave number. In equation (1), bZ is an ordering operator for the z-coordinate which is

necessary only when noncommuting two-body interactions are considered. The phase elements

of � are de�ned by matrix elements of arbitrary projectile-target states of the operator

b�(b) =X
�;j

��

2k

Z
1

�1

dz t�j(r� � rj + x) (2)

where � is the nucleus-nucleus reduced mass, � and j label the projectile and target constituents,
respectively, r is the internal coordinate, x is the relative coordinate with x = (b ; z), and t�j
is the free two-body scattering amplitude in the overall center-of-mass frame. For a projectile

transition from quantum state n to n0 and target transition from � to �0, we write

�
n�;n0�0(b) =

AP ;ATX
�;j

��

2k

Z
+1

�1

dz0 < n�jt�jjn
0�0 > (3)

where AP and AT denote the mass numbers of projectile and target, respectively. Equation (3)

is written in terms of transition densities � as

�
n�;n0�0(b) =

��

2k

X
�j

Z
1

�1

dz

Z
dr� drj ���0(rj) �nn0(r�) t�j(r�+ rj � x) (4)

or in terms of transition form factors as

�
n�;n0�0(b) =

��

2k(2�)3

X
�j

Z
1

�1

dz

Z
dq eiq�x Fnn0(�q) G��0(q) t�j(q) (5)

where F and G are the projectile and target one-body form factors, respectively.

The two-body amplitudes must be related to their values in the nucleon-nucleon (NN) center-

of-mass (CM) frame where the physical amplitude fNN is determined by experiments. Making

this transformation and noting that the z-integration in equation (5) can be performed formally

if commuting interactions are assumed reduces equation (5) to

�
n�;n0�0(b) =

1

2�kNN

X
�j

Z
d2q eiq�b Fnn0(�q) G��0(q) fNN(q) (6)

where fNN is the two-body scattering amplitude in the NN CM frame. Equation (6) is convenient

for calculations since it is essentially a one-dimensional integration if the form factors are known.

The second-order approximation to the elastic (EL) amplitude is obtained by including all

transitions between the ground and excited states and assuming that transitions between excited

states are negligible. Furthermore, the density of all excited (EXC) states is approximated by

an average excited-state density. The phase matrix is then of the bordered form

�(b) =

0
BBBBBBB@

�
EL

�
00;01 �

00;10 �
00;11 � � �

�
01;00

�
EXC 0 0 � � �

�
10;00 0 �

EXC 0 � � �

�
11;00 0 0 �

EXC � � �

...
...

...
...

1
CCCCCCCA

(7)
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where �EL = �00;00. The characteristic equation of this bordered matrix is

(�EXC � �)N0�2
h
(�EL � �)(�EXC� �)��2

i
= 0 (8)

where N0 is the order of �; � is the eigenvalue, and �2 is de�ned by

�2(b) =
X

n or � 6=0

�00;n��n�;00 (9)

The eigenvalues are then given by

�1;2 =
1

2
(�EL + �

EXC)�

(�
1

2
(�EL � �

EXC)

�2
+ �2

)1=2

(10)

with all others taking the value �
EXC. The form of the eigenvalues allows us to treat the

scattering system as an e�ective two-channel problem with

� =

�
�EL �

� �
EXC

�
(11)

Then, from employing Sylvester's theorem we �nd that

f
(2)
CC(q) =

�ik

2�

Z
e�iq�b

8><
>:exp

�
1

2
i(�EL + �

EXC)

�

�

2
4cos��2DIF + �2

�1=2
+ i�DIF

sin
�
�2
DIF +�2

�1=2
�
�2
DIF +�2

�1=2
3
5 � 1

9>=
>; d2b (12)

where the subscript CC denotes coupled channels and the di�erence (DIF) is given as

�DIF =
1

2
(�EL � �

EXC)

An expansion of equation (12) reveals, as expected, that �EXC appears only in third-order and
higher order terms in fNN(q). As discussed in reference 14, a reasonable approximation to �EXC
is to assume the ground-state density for the excited states. If �EXC is set equal to �EL we �nd

f
(2)
CC(q) �

�ik

2�

Z
exp(�iq � b)[exp(i�EL) cos�� 1] d2b (13)

The coherent approximation (ref. 17) is recovered in the limit of small �.

By using closure to perform the summations in equation (9), �2 is given as

�2(b) = APAT

�
1

2�kNN

�2 Z
d2q d2q0 e�iq�b e�iq0

�b fNN(q) fNN(q
0)

�

h
�APAT F (1)(q) F (1)(q0) G(1)(�q) G(1)(�q0) + (AP � 1)(AT � 1) F (2)(q;q0) G(2)(�q;�q0)

+ (AT � 1) F (1)(q+ q0) G(2)(�q;�q0) + (AP � 1) F (2)(q;q0) G(1)(�q;�q0)
i

(14)
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where F (1) and F (2) (G(1) and G(2)) are the projectile (target) one- and two-body, ground-state
form factors, respectively.

Townsend (ref. 29) has considered Pauli correlation e�ects between projectile and target
nucleons. Here, the �rst-order elastic phase is written as

�EL(b) = �DIR(b) � �EX(b) (15)

The direct (DIR) term is written as

�DIR(b) =
APAT

2�kNN

Z
d2q eiq�b F (1)(�q) G(1)(q) fNN(q) (16)

and the exchange (EX) term is written as

�EX(b) =
APAT

2�kNN

Z
d2q eiq�b F (1)(�q) G(1)(q)

�

1

(2�)2

Z
d2q0 eiq

0
�b fNN(q+ q0) C(q0) (17)

We use the parameterization of fNN as

fNN(q) =
�(�+ i)

4�
kNN exp

�
�

1

2
Bq2

�
(18)

where kNN is the relative wave number in the two-body system, � is the two-body scattering
cross section, B is the slope parameter, and � is the ratio of the real part to the imaginary part
of the forward two-body scattering amplitude. Values for the energy-dependent �;B, and � are
found in reference 29. The correlation factor is found as

C(q) =
1

4

�

d
e�q

2=4d2 (19)

in reference 29 with d = 1:85 fm�1.

The total (TOT) cross section is found from the elastic amplitude by using the optical theorem
as follows:

�TOT =
4�

k
Im f(q = 0) (20)

Equations (13) and (20) show that

�TOT = 4�

Z
1

0
b db

�
1�

1

2
exp[�Im(�EL +�)] cos[Re(�EL +�)]

�

1

2
exp[�Im(�EL � �)] cos[Re(�EL ��)]

�
(21)

where Im and Re denote imaginary and real quantities, respectively. The total absorption (ABS)
cross section is found by using

�TOT = �ABS + �EL (22)

where �EL is the total elastic cross section. Integrating equation (13) by using d
 � d2q=k2 and
equations (21) and (22) yields

�ABS = 2�

Z
1

0
b db

�
1�

1

2
exp(�2 Im �EL)[cosh(2 Im �) + cos(2 Re �)]

�
(23)
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2.1. Model Form Factors

The one-body form factor is written in terms of the charge (CH) form factor as

F
(1)(q) = FCH(q)=Fp(q) (24)

where Fp is the proton form factor taken as e�r
2
pq

2=6 with rp = 0:86 fm. For 4He, an excellent
�t to the charge form is given by (ref. 30)

FCH(q) = [1� (0:316q)12]e�(0:681q)
2

(25)

The harmonic well model is often used for A � 20 where the charge form factor is

FCH = (1� sq
2)e�aq

2

(26)

and values for parameters s and a are from reference 29. For nuclei where a Woods-Saxon
density is appropriate (AT � 20),

�CH(r) =
�o

1 + e(r�R)=c
(27)

An exact Fourier transform to obtain the charge form factor for a Woods-Saxon density may be
found in a series solution (ref. 31)

FCH(q) =
4�

q
�o �(q) (28)

where

�(q) = �Rc

(
� cos(Rq)

sinh(�cq)
+

�c

R

sin(Rq) coth(�cq)

sinh(�cq)

�
2c

�R

1X
m=1

(�1)m
mcq exp(�mR=c)�

(cq)2 +m2
�2

)
(29)

The series in equation (29) converges rapidly, and the �rst three or four terms are accurate for
most applications. Values for the parameters c and R are taken from reference 29.

The second-order calculations are di�cult because the two-body form factors of the projectile
and target must be known. We next consider the Jastrow method of correlated wave functions
in order to model the form factors of 4He.

By using a coordinate system unconstrained by the nuclear center of mass, we introduce the
model form factors FM (which are related to the intrinsic form factors) given by

F
(1)(q) =

F
(1)
M (q)

FCM(q)
(30)

F
(1)(q;q0) =

F
(2)
M (q;q0)

FCM(q+ q0)
(31)
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with the harmonic oscillator CM correction assumed with

FCM(q) = exp

�
�R2q2

4A

�
(32)

where R is related to the oscillator parameter .

The Jastrow method of correlated basis functions (ref. 32) introduces a correction factor to
the wave function calculated in a single-particle potential model in order to take into account
the e�ects of the short-range repulsive part of the nuclear potential on the wave function. The
Jastrow-correlated wave function is written as (ref. 32)

	c
A(r1 � � �rA) = 	A(r � � �rA)

AY
i>j=1

f(ri; rj) (33)

where 	A represents the Slater determinant for the ground state wave function and the
correlation factor f(ri; rj) is assumed to depend only on the relative separation of ri and rj
and obeys

f(ri; rj) !

(
0

�
jri � rjj ! 0

�
1
�
jri � rjj Large

�
)

(34)

The two-particle density is given by

�(r; r0) = N

Z
j	c

A(r; r
0; r3; � � � ; rA)j

2dr3 � � �drA (35)

where N is the normalization constant.

The Jastrow correlation factor contains up to A-particle correlations. Since our considerations
are for two-particle correlations, we consider a low-order approximation to this model (refs. 33
and 34) and write the model two-body density as

�M (x;x0) = N �s(x) �s(x
0) jg(x;x0)j2 (36)

with
g(x;x0) = 1� e��(x�x

0)2 (37)

where � will determine the correlation length. In equation (36), �s is a single-particle density
assumed to be determined by the Slater determinant in equation (33).

By using a single-particle wave function of the form

	s(r) =
p
NS e�r

2=2R2

(38)

the one- and two-body form factors of 4He are found as (ref. 15)

F
(1)
M (q) =

3X
i=1

Ci e
�q2=4vi (39)

and

F
(2)
M (q;q0) =

3X
i=1

Ci e
�q2=4vi e�q

02=4vi e�diq�q
0

(40)
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with

ai =
1

R2
+ �i (41)

�i = (i� 1)� (42)

vi = ai �
�
�2i =ai

�
(43)

di = �i=2aivi (44)

and
C1 = CT =(a1v1)

3=2 (45)

C2 = �2CT =(a2v2)
3=2 (46)

C3 = CT =(a3v3)
3=2 (47)

where

CT =
h
(a1v1)

3=2
� 2(a2v2)

�3=2 + (a3v3)
�3=2

i
�1

(48)

2.2. Results for the Elastic Channel

In �gure 1 we show the charge form factor for 4He with the experimental data from refer-
ences 30 and 35. The solid line is obtained using the model form factor from equation (39)
with 1=R2 = 0:65 fm�2 and � = 2:0 fm�2, and the dash-dot line comes from the parameteri-
zation of equation (25). In �gure 2 the two-particle density for 4He is plotted against the relative

Equation (39)
Equation (25)
Experimental
(ref. 30 and 35)

100

10-1

10-2

10-3
0 5 10 15 20

q2, fm-2

F
C

H

Calculations (eq. (36))
Ref. 34 (Jastrow model)

.25

0 1 2 3 4

r, fm

ρ 2
(r
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 f

m
-6

.20

.15

.10

.05

Figure 1. Elastic charge form factor for 4He. Figure 2. Two-particle density for 4He as function of

relative separation distance r.

separation. The solid line is from equation (36), and for comparison a higher order Jastrow
calculation from reference 34 is shown as the dash-dot line. Both models lead to about the
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same healing distance which is directly related to the position of the minima in the one-body
form factor (�g. 1) in our model. In the Jastrow model of reference 34, the CM constraint was

neglected which may account for the di�erences in overall magnitude between the two models.

In �gure 3 the elastic cross section for 4He{4He scattering at 635A MeV is shown as a

function of the invariant momentum transfer t, where t = �q2. The experimental data are

from reference 36. The second-order model shows substantial improvement over the �rst-order

model, especially at the second di�raction maxima where double scattering dominates and leads

to excellent agreement with the experiment. In �gure 4 a similar comparison is made with the

data from reference 37 at 1A GeV.

Second order
First order
Experimental
(ref. 36)

104
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100

10-2
0 .2 .4 .6 .8

–t, (GeV/c)2

dσ
/d

t, 
[m

b/
(G

eV
/c
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2

10-1

101

103

Second order
First order
Experimental
(ref. 37)

104

10-3
0 .6 .8

–t, (GeV/c)2
.4.2

102

103

101

100

10-1

10-2

dσ
/d

t, 
[m

b/
(G

eV
/c

)]
2

Figure 3. Invariant distribution versusmomentumtrans-
fer (�t) for �+� elastic scattering at 635A MeV.

Figure 4. Invariantdistributionversusmomentumtrans-
fer (�t) for �+� elastic scattering at 1A GeV.

Second-order calculations become more di�cult for heavier targets if realistic form factors

are used since many integrations must be handled numerically in evaluating �(b). In �gure 5 we

show a comparison between �rst- and second-order calculations for elastic 4He on 16O scattering

at 1A GeV with the Jastrow model described above used for 16O in evaluating �(b) using the

appropriate radii for 16O. Di�erences between the bordered and coherent model solutions are

not substantial, which may be due to our choice of form factors for 16O in �(b).

In table 1 the calculations of total and absorption cross sections are compared with experiment

for several laboratory (LAB) energies (ref. 38) for � particles reacting with 1H, 4He, and 12C.

The second-order calculations are seen to lead to improved agreement with experiment ; however,

di�erences between the two solutions are only a few percent. We conclude that the second-order

solutions o�er improved agreement over the coherent approximation. However, this agreement

is already within a few percent for absorption cross sections. Improvements in elastic spectra

occur only beyond the forward di�raction peak. Important improvements will likely be found

at low energies.
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104
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Figure 5. Elastic
4
He+

16
O scattering at 1A GeV.

Table 1. Results for Total and Absorption Cross Sections

Values of �TOT, mb, for| Values of �ABS, mb, for|

TLAB, First Second First Second

A MeV order order Experiment order order Experiment

�{p

870 123 140 143� 1:6 94 101 120� 6:2

2100 126 142 147� 0:4 96 103 111� 5:7

�{�

870 359 389 390� 6:3 244 253 262� 18:5

2100 368 397 408� 5:5 249 259 276� 15

�{
12
C

870 814 829 790� 7 520 528 542� 16

2100 826 842 835� 5 530 536 547� 3

3. Quasi-Elastic Scattering

The large energy separation between the 4He ground state and �rst excited state may lead
to a large cross section for quasi-elastic scattering. In the quasi-elastic process the alpha
projectile loses energy and receives momentum transfer without su�ering a change in mass and,
concomitantly, the target nucleus fragments. A signi�cant quasi-elastic (QE) cross section will
be important since this process will contribute to the absorption; however, no secondary particles
are produced from the projectile in the reaction. The quasi-elastic distributions in momentum
and energy transfer are also used to describe the inclusive breakup of light ions (refs. 23 and 24).
The QE cross section is evaluated next in the high-energy optical model.

3.1 Scattering Formalism

In treating inelastic scattering we assume that the o�-diagonal terms in �, denoted by �o, are
small compared with the diagonal one, �

D
, and then we expand f from equation (1) in powers

of �o:

f(q) =
ik

2�

Z
d
2
b e

iq�b
e
i�D(b)

X
m=1

(�
i�o(b)

�
m

m!

)
(49)
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We also will make the assumption that the diagonal terms are all represented by the ground-

state elastic phase �. In the remainder of the paper we drop the subscript EL on the elastic

phase because it will appear only in a distorted wave, and its meaning should be apparent to

the reader. By using equation (3) we sum over target �nal states X (continuum) to �nd the

inclusive (IN) angular distribution for the projectile when its mass remains unchanged as

d�

d


�
IN

=
k2

(2�)2

Z
d2b d2b0 eiq�(b�b

0) exp fi[�(b) � �+(b0)]g

�
X
X 6=0

X
m=1

1

(m!)2
< 0P 0T

����ib�(b)�m
��� 0PX >

� < X0P j
h
�ib�+(b0)

im
j0P0T > (50)

Equation (50) allows only for a study of the momentum transfer spectra of the projectile. In

considering the energy loss of the projectile, energy conservation must be treated. By using

continuum states for the target �nal state, energy conservation leads to

d2�

d
 dE0
P

�
IN

=
k2

(2�)2

Z
d2b d2b0 eiq�(b�b

0) exp
�
i
�
�(b)� �+(b0)

�	 ATX
m=1

Wm(b;b0; !) (51)

where E 0
P
is the energy of the projectile in the �nal state and ! is the energy loss of the projectile.

We de�ne

Wm(b;b0; !) =
1

(m!)2

Z mY
j=1

�
dkj

(2�)2

�
�(Ef �Ei) < 0P0T

����b�(b)�m
��� 0pkj >

� < kj0P

���hb�+(b0)

im��� 0P0T > (52)

(refs. 18 and 19) where kj is the wave number vector of a knocked-out target nucleon. The

functionsWm are next related to the response functions of the target in the cylindrical geometry

of the eikonal approximation.

The �rst collision term is written as

W1(b;b
0; !) =

A2
PAT

(2�kNN)
2

Z
d2q d2q0 eiq�b e�iq

0�b0

F (q) F (q0)

� fNN(q) f
+
NN(q

0)

Z
d2k

(2�)2
�(! � Ek) Gok(q) G

+
ko
(q0) (53)

where F is the projectile ground-state form factor and Gok is the target transition form factor.

We change variables as

� =
1

2
(q+ q0) (54)

� = q� q0 (55)

x = s� s0 (56)

y =
1

2
(s+ s0) (57)
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and also
R = b � b0 (58)

S =
1

2
(b + b0) (59)

such that

W1(R;S; !) =
A
2

PAT

(2�kNN)
2

Z
d
2
� d

2
� e

i��R
e
i��S

A

�
�+

�

2

�
A
+

�
��

�

2

�
R1(�;�; !) (60)

where we have de�ned
A(q) = F (q) fNN(q) (61)

and the target response function is

R1(�;�; !) =

Z
dk

(2�)2
�(! � Ek) Gok

�
�+

�

2

�
G
+

ko

�
��

�

2

�
(62)

By following Krimm et al. (ref. 39) we can formally treat the delta function in equation (62) by
introducing a Fourier transform pair

R1(�;�; !) =

Z
dt

2�
e
i!t eR1(�;�; t) (63)

eR1(�;�; t) =
Z
d! e

�i!t
R1(�;�; !) (64)

Then,

eR1(�;�; t) =
Z

dk

(2�)2
e
�iEkt Gok

�
�+

�

2

�
G
+

ko

�
��

�

2

�
(65)

For a nonrelativistic nucleon we have

Ek =
k2

2mN
+ �B1

(66)

where �B1
is the binding energy. By assuming plane waves for the target �nal state in Gok,

equation (65) then becomes

eR1(�;�; t) =
Z

dk

(2�)2
dx dy e

�i�B1
t
e
�ik2t=2mN e

i��x
e
i��y

e
ik�x

� �

�
y + x

2

�
�+

�
y� x

2

�
(67)

where � is the single-particle wave function of the target ground state. Using equations (67)
and (63) gives

R1(�;�; !) =

8>>><
>>>:

mN
2�

R
dx dy e

i��x
e
i��y

Jo

q
2mN(! � �B1

)x2

� �
�
y + x

2

�
�+

�
y � x

2

� �
! � �B1

�
0

�
! < �B1

�

9>>>=
>>>;

(68)

The higher order collision term is more complicated because of the enumeration of pro jectile-
target intermediate states that can occur. A �rst approximation is to keep only 1p�1h excitations
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of the target (one for each inelastic scattering) and assume that the projectile remains in the
ground state (coherent approximation).

Using similar coordinate changes as described above, the mth-order collision term is found

in the coherent approximation to be

Wm(R;S; !) =
A2m
P AmT

(m!)2(2�k
NN

)2m

Z mY
j=1

�
d2�j d

2�j

� ei
�j �R e

i�j �S Aj

�
�j +

�j

2

�
A+
j

�
�j �

�j

2

��

� Rm(�1; : : : ;�m;�1; : : : ;�m; !) (69)

where

Rm(�1; : : : ;�m;�1; : : : ;�m; !) =
mm
N

(2�)m

Z mY
j=1

"
d2xj d

2yj e
i�j �xj e

i�j �yj

� �
�
yj +

xj

2

�
�+
�
yj �

xj

2

�#

�

2m�1
�
! � �Bm

�m�1

"
2mN

�
! � �Bm

� mP
j=1

x2j

#(m�1)=2

� Jm�1

2
4s2mN

�
! � �Bm

�X
j=1

x2j

3
5 (70)

where Rm = 0 for ! < �Bm. We next consider a simpli�ed representation of the m > 1 terms.

By assuming that the target wave functions are forward peaked, we approximate

Jm�1

 
�m

s
mP
j=1

x2j

!
 
�m

s
mP
j=1

x2j

!m�1
�

1

(m� 1)! 2m�1

mY
j=1

Jo

�
�mxj

2(m�1)=2

�
+ O

�
�4mx

4
j

�
(71)

where

�m =

q
2mN

�
! � �Bm

�
(72)

such that

Rm(�1; : : : ;�m;�1; : : : ;�m; !) �

�
! � �Bm

�m�1

(m� 1)!

mY
j=1

R1

�
�j ;�j;

�m

2(m�1)=2

�
(73)

and

Wm(R;S; !) =

�
! � �Bm

�m�1

(m� 1)!(m!)2

�
W1

�
R;S;

�m

2(m�1)=2

��m
(74)
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A numerical test of the forward-peaked wave function approximation is discussed below. The
energy loss spectrum in a coherent pro jectile model is given by

d2�

d
 dE0

P

�
IN

=
k2

(2�)2

Z
d2R d2S eiq�R exp

�
i
�
�
�
S+R
2

�
�
�+

�
S�R

2

��	

�

ATX
m=1

�
! � �Bm

�m�1

(m� 1)!(m!)2

�
W1

�
R;S;

�m

2(m�1)=2

��m
(75)

After angular integration, the energy loss spectrum is found as

d2�

dE0

P

�
IN

=

Z
d2S e�2 Im

�(S)
ATX
m=1

(! � �Bm)m�1

(m� 1)!(m!)2

�
W1

�
O;S;

�m

2(m�1)=2

��m
(76)

The coherent approximation assumes that the projectile remains in the ground state through-
out the scattering. The leading-order correction to the coherent terms occurs in W2 and corre-
sponds to the replacement (ref. 40)

A4P F

�
�1 +

�1

2

�
F

�
�1 �

�1

2

�
F

�
�2 +

�2

2

�
F

�
�2 �

�2

2

�

! A2P

��
F (2�1) + (AP � 1) F

�
�1 +

�1

2

�
F

�
�1 �

�2

2

��

�

�
F (2�2) + (AP � 1) F

�
�2 +

�2

2

�
F

�
�2 �

�2

2

���
(77)

which, physically, represents the projectile dissociating in the intermediate state. Further
modi�cations are necessary when correlation e�ects not included here are treated.

The distribution in momentum transfer to the projectile nucleus may be obtained from
equation (75) after integration over the energy loss. An alternate expression is obtained from
equation (49) or (1) through use of closure without regard to energy thresholds for ejecting
particles into the continuum given by references 40 and 41. Thus,

d�

d


�
IN

=

�
k

2�

�2 Z
d2R d2S eiq�R exp

�
i

�
�

�
S+

R

2

�
� �+

�
S�

R

2

���h
e
(R;S) � 1

i
(78)

with


(R;S) =
A2PAT

(2�kNN)
2

Z
d2q d2q0 eiq�b e�iq�b

0

fNN(q) f
+
NN

(q0)F (q) F (q0) G(q� q0) (79)
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The distributions in momentum transfer obtained from equations (75) and (78) are equivalent
if the response function obeys the sum ruleZ

d! R1(q;q
0; !) = G(q� q0) (80)

with similar relationships for higher order terms.

An accurate approximation for obtaining numerical results is to expand the elastic coupling

phase in equation (75) or (78) as

i

�
�

�
S+R

2

�
�

�+
�
S�R

2

��
= �2 Im �(S)� iR � rS Re �(S) + : : : (81)

with

iR � rS �(S) = �R cos(�R � �S) Re �
0(S) (82)

where �R and �S are azimuthal angles and

�0(S) =
APAT
kNN

Z 1

0
q2 dq J1(qS) fNN(q) F (q) G(q) (83)

We then have, for example,

d2�

d
 dEp

�
IN

=
k2

(2�)2

Z 1

0
R dR

Z 1

0
S dS e�2 Im �(S) Jo(qR)Jo

�
R [Re �0(S)]

	

�

ATX
m=1

(! � �Bm)
m�1

(m� 1)!(m!)2

�
W1

�
R; S;

�m

(m� 1)=2

��m
(84)

The second term in equation (81) physically allows for momentum transfer in elastic scattering

and usually makes only a small contribution (ref. 41).

3.2. Shell Model Response Functions

For light nuclei (A � 16), we use shell model harmonic oscillator wave functions. Thus, for

s-shell nucleons,

�s(r) =

 
1

�R2
T

!3=4
e�r

2=2R2

T (85)

and for p-shell nucleons in a spherical basis with components m,

�pm(r) =

 
1

�R2
T

!3=4 s
2

R2
T

rm e�r
2=2R2

T (86)

where RT is the target radii and

rm =

( 1p
2
(x� iy) (m = �1)

z (m = 0)

)
(87)

The s-shell and p-shell probabilities are given, respectively, by

Cs =
4

A
(88)
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and

Cp =
A� 4

A
(89)

From equation (68) the response function is then

R1(�;�; �1) = mNR
2
T e

�R2

T
�2=4

e
�R2

T
�2

e
�R2

T
�2
1

�

��
2Cs �

Cp

3
R2
T�

2 +
4

3
CpR

2
T

�
�2 + �21

��
Io

�
2R2

T��1

�

�

8

3
CpR

2
T��1 I1

�
2R2

T��1

��
(90)

where Io and I1 are modi�ed Bessel functions. Higher order response functions are then
approximated by using equations (73) and (90). The collision term W1 can now be found
in analytic fashion, and higher order terms are approximated by using equation (74).

3.3 Results for Quasi-Elastic Scattering

Theoretical calculations for quasi-elastic �{4He scattering at 1A GeV are compared with
experiment (ref. 42) in �gure 6 for several scattering angles. The calculations shown are
made with the approximation of equation (75). For consistency we show only the coherent
contributions since we have not formulated the corrections for incoherent pro jectile motion
beyond W2. The multiple scattering structure is apparent with single inelastic collisions dom-
inating at a small momentum transfer and the higher order contributions increasing in im-
portance with q. In �gure 6 the second collision term is seen to peak at a smaller energy
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Figure 6. Momentum spectra of � particles in ��4He collisions at 1A GeV for scattering angles of 2.112�

(q = 1:31 fm�1), 3.094� (q = 1:92 fm�1), 3.63� (q = 2:25 fm�1), and 4.552� (q = 2:82 fm�1).
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loss than the �rst term because of the sharing of the total momentum transfer between two
scatterings. This e�ect keeps the position of the theoretical peak in good agreement with the
experiment. The strengths of the distributions compare fairly well with experiment except at
the largest momentum transfers. This discrepancy grows when calculations are compared with
the larger angle data of reference 40 (not shown), and it is attributed, at least partially, to our

use of a Gaussian wave function for the 4He ground state.

In �gure 7 we illustrate the accuracy of the approximation of equation (73) for the term W2
for �-� scattering at � = 3:63�. Incoherent e�ects are shown to signi�cantly reduce the second
collision term. Correlations among projectile nucleons will thus play a role in understanding the
quasi-elastic peak.

6.6 6.7 6.8 6.9 7.0
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σ
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Ω
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b
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) s

r

Coherent model with
forward-peaked
approximation (eq. (73))
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peaked approximation

103
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Figure 7. Comparison of calculations ofW2 in various approximations for ��4He scattering at � = 3:63�. Solid curve

is exact incoherent result, dash-dot curve is incoherent result with forward-peaked wave function approximation,

dashed-line curve is exact coherent result, and dotted curve is coherent result with forward-peakedwave function

approximation.

In �gure 8 we show results for quasi-elastic alpha scattering on 16O at 1A GeV for scattering
angles of 1� and 4�. The higher order terms are seen to grow in importance with increasing
energy loss and momentum transfers.

In �gures 9{11 we compare our calculations with the experiments of Ableev et al. (refs. 43

and 44) for the inclusive scattering cross section versus the invariant momentum transfer on 12C,
27Al, and 64Cu targets at 3.6A GeV. The measurements correspond with the sum of the elastic
and quasi-elastic cross sections. In the �gures the calculations are denoted as elastic scattering
using the �rst-order optical model (dotted line), the quasi-elastic part using equation (78)
(dashed line), and total scattering which is the sum of the elastic and quasi-elastic cross sections
(solid line). Agreement with experiment is seen to be quite good.

In �gure 12 we show predictions for the total quasi-elastic cross section for �+12C scattering
as a function of laboratory energy. The energy dependence of the cross section follows roughly
that of the nuclear absorption cross section and is seen to make up almost 10 percent of the
absorption. In �gure 13 we show predictions for �+16O scattering where similar conclusions
apply.
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Figure 8. Calculations of quasi-elastic ��16O scattering at 1A GeV for � = 1� and 4�.
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Figure 9. Inclusive 4He+12C scattering distributionsat

3.6A GeV versus invariant momentum transfer.

Figure 10. Inclusive 4He+27Al scattering distributions

at 3.6A GeV versus invariant momentum transfer.
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Figure 12. Prediction of quasi-elastic�+12C total cross

section versus laboratory energy.
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Figure 13. Prediction of quasi-elastic�+16O total cross section versus laboratory energy.

4. Light-Ion Fragmentation on Nuclear Targets

The fragmentation of 4He is somewhat simpler than that of heavier nuclei in that there are
only a small number of �nal states that can occur. These reactions are

�+T !

8>>>>><
>>>>>:

3He + n +X (91a)
3H+ p+X (91b)

d+ d+X (91c)

d+ n+ p+X (91d)

n+ n+ p+ p+X (91e)

where X is the �nal target state. Each of the reactions in equations (91) can occur with or
without meson production if su�cient energy is available. The reactions in equations (91) are
not exhaustive of the absorption processes; most notable are the compound nuclear and pickup
channels that are important at low energies. A model for the two-body dissociation of light ions
has been developed (refs. 23, 24, and 45) that describes the �rst three reactions in equations (91),
which we now discuss.

19



4.1. Two-Body Dissociation Theory

For an inclusive reaction involving the two-body dissociation of the projectile, we write

P + T ! a+ b+X (92)

where a and b are assumed to be clusters present initially in the projectile and X is the �nal
unobserved target state. We consider the case where a is the observed projectile fragment in the
measurement and note that the unobserved target states must be summed over in evaluating
the cross section. A summation over possible states of the particle b should also be considered.

By using relativistic kinematics, the transition amplitude (T ) for equation (92) is related to
the Lorentz invariant momentum distribution for producing the fragment a by

Ea
d�

dpa
= Ea

(2�)4

�

Z
dpb

ATX
m=1

mY
j=1

dpj �(pf � pi) �(Ef �Ei) jTfij
2 (93)

where f and i label the �nal and initial states, respectively, � is the relative projectile-target
velocity, and the summation in equation (93) is over the possible con�gurations of target particles
in the �nal state. A useful approximation to equation (93) is to consider the �nal target state
as an e�ective particle X and apply energy conservation in an approximate manner. Here we
consider an e�ective three-body problem

Ea
d�

dpa
=

(2�)4

�

Z
d
bK

X
X

jTfij
2 (94)

where the phase space factor is given by

K =
EaEbEXp

2

b

pb(Eb +EX) + paEb cos(�a + �b)
(95)

In equation (94) we are ignoring the mass spectrum of the �nal target states in imposing energy
conservation, and we will assume that MX �MT .

The transition amplitude can be written as a three-body problem of a� T; b� T , and a� b

interactions when rearrangement channels are neglected and with the understanding that all
target �nal and intermediate states must be summed. Using the Faddeev method allows us to
consider the multiple scattering series generated by the coupled set of integral equations

bT = bT a + bT b + bT T (96)

with bT a = bTbT + bTbT Go(bT b + bT T )bT b = bTaT + bTaT Go(bT a + bT T )bT T = bTab + bTab Go(bT a + bT b)

where bTaT ; bTbT , and bTab are the \two-body" amplitudes that are the transition operators for
aT; bT; or ab scattering, respectively, in the projectile target space and where the Green's
function in the impulse approximation is

Go =

 
E �

k2a

2ma
�

k2
b

2mb
�

k2
X

2mX
+ i�

!
�1

(97)
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We consider the leading-order corrections to the pole approximation by truncating equation (96)
as bT =

�
1 + bTabGo

��bTaT + bTbT + bTaTGo
bTbT + bTbTGo

bTaT
�

(98)

and replacing bTaT and bTbT by their on-shell values. However, equation (98) allows for all orders
of multiple scattering by assuming the dominance of the ab cluster in the projectile and the fact
that ab scatters only after interaction with the target.

The �rst-order terms of Tfi are shown in �gure 14. In �gure 14(a) the fragment a is the

spectator with the unobserved fragment b interacting with the target. In �gure 14(b) the roles
of a and b are reversed with b being the spectator. These terms are written as

T (1)
fi

= �(ua) TbX(
p
sbT ;Q) + �(ub) TaX(

p
saT ;Q) (99)

where � is the overlap function representing the virtual projectile decay, P ! a+ b;
p
s is the

invariant energy for the quasi-scattering of cluster on the target, Q is the total momentum
transfer in the reaction Q = pT � pX , and

ua = pa �
ma

mp

pp (100)

ub = �pb +
mb

mp

pp = Q � pa (101)

From equations (100) and (101) we expect the �rst term in equation (99) to dominate at small
pa. In equation (99) the amplitudes TjT are half-o� shell, where j is either a or b, but are

assumed on-shell in a high-energy approximation.
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(a) Spectator term. (b) Participant term.

Figure 14. Terms for projectile fragmentation.

In �gure 15 corrections for �nal-state interactions (FSI) between the projectile fragments are
shown. The FSI diagram (�g. 15(a)) leads to the integral

T (1)0
fi

= TbX(
p
sbT ;Q)

Z
dk

2�ab �
�
k+ ma

mp
Q

�
Tab(k;pab)

p2
ab
� k2 + i�

(102)

where pab is the relative momentum. We follow references 46{48 and use an o�-shell separable
T -amplitude for the FSI where the overlap function is used to replace the Yamaguchi poten-
tial form factors, thus ensuring orthogonality between the bound and scattering states of a and b.
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Figure 15. Terms for �nal-state interaction.

The higher partial waves are estimated using the Glauber amplitude for ab elastic scattering.
The terms in �gures 14 and 15 are combined as

eT (1)

fi
= e�(ua) TbX(

p
sbT ;Q) + e�(ub) TaX(

p
saT ;Q) (103)

where the distorted overlap function e� is de�ned as

e�(ua) = �(ua) � �(pab)
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2ma

mp
Q

�
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�
(104)

and

D(p; q) = �
Z

dk
�
�
k+ q

2

�
(�2 + k2) �(k)

p2 � k2 + i�
(105)

where � is related to the a � b separation energy �s by �2 = �2�ab�s. The energy-dependent
parameters of the two-body amplitudes in fab are taken from reference 29 with the two-body
cross sections allowed to smoothly fall to 0 below 20 MeV such that the s-wave part dominates
at low energies.

In equation (103) the decay amplitude � is written in the CM frame; however this amplitude
is usually parameterized in the projectile rest frame. We transform to the projectile rest frame
using

�(ua) =

�
Ea(Ep � Ea)Ep

E0

a(mp � E0

a)mp

�1=2
�0(p0

a) (106)

where primed variables represent projectile frame quantities. Using the parameterization

�0(p0) =
p
N
X
i=1

ai

p02 + �2i

(107)

with �1 = � and
p
N being a normalization constant allows the dispersion integral in equa-

tion (105) to be evaluated in analytic form. Values for the vertex function parameters are listed

in table 2. The overlap probability jZj2 is also listed in table 2.

In �gure 16 we show the rescattering-type correction where both a and b interact with the
target. In �gure 17 the corrections for FSI to the rescattering are shown. These terms are almost
always neglected for composite-composite breakup reactions. For �gure 16 we write

T (2)

fi = 2�aT

Z
dq2

TbT (Q� q2) �
�
pa � ma

mp
pp �Q

�
TaT (q2)

�q2
2
� (2paX � q2) + i�

(108)
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Table 2. Overlap Function Parameters

Projectile Es, MeV �1, fm
�1 �2, fm

�1 �3, fm
�1 jZj2

(a)

d! n� p 2.22 0.232 1.434 0 1.00
3H! d� n 7.10 .448 .92 0 .85
3He! d� p 7.10 .420 .92 0 .85
4He! 3H� p 19.82 .846 1.15 1.65 .60
4He! 4He� n 20.58 .863 1.65 1.65 .75
4He! d� d 23.85 1.070 1.60 2.50 .50

aFor �3 = 0: a1 = 1; a2 = �1. For �3 6= 0: a1 = 1; a2 =
�(�2

3
� �
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1
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�
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Figure 16. Rescattering corrections.
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Figure 17. Rescattering corrections with �nal-state interaction.

with a similar contribution occurring when the roles of a and b are reversed and where paX is
the relative a and X momentum in the �nal state.

For �gure 17 we �nd that

T
(2)0
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= 2�ab
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dq
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(109)
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Equation (109) is considered so that the rescattering corrections can be treated in a consistent
manner with the �rst-order terms because the fragment FSI will occur at a relatively low energy
compared with the aT or bT motion. The contribution from equation (109) should be most
important for small pab, and we assume that pX � pab or kab in order to reduce the integral to
a manageable form. We can then combine equations (108) and (109) in a distorted-wave form
as

eT (2)
fi

� �
2�2i�aT
paX

Z
x dx TbT (Q � x)

�
� (x;pa;Q) TaT (x) (110)

where
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dk

�
�
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mp
Q

�
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p2
ab
� k2 + i�

(111)

where x = �2paX cos �q2 q̂2, and the second term in equation (111) is evaluated similar to that
in equation (104). In equation (110) the target �nal and intermediate states must be considered
for inelastic fragmentation.

4.2. Elastic and Inelastic Fragmentation

A convenient way to handle the target state summations is to separate the momentum
distribution in equation (94) into elastic and inelastic terms corresponding to the �nal target
state. In elastic fragmentation the target remains in the ground state, and in inelastic
fragmentation it remains in the target fragments. This separation is given as

Ea

d�

dpa
= Ea

�
d�

dpa

�
EL

+Ea

�
d�

dpa

�
IN

(112)

Using

fij =
��ij

2�
Tij (113)

where �ij = EiEj=(Ei+Ej) and de�ning the internal momentum distribution � of the fragments

(in units of (MeV/c)�3=2 where c denotes the speed of light) by � = (2�)3=2� allows us to write
for elastic breakup

Ea

�
d�

dpa

�
EL

=
1

�

Z
d
p K jMELj

2 (114)

where

MEL =
�1

�bX

e�(ua) fbT (Q)�
1

�aX
e�(ub) faT (Q)

+
�aT

2�aX�bT paX

Z
x dx fbT (Q� x)
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�(x;pa;Q) faT (x)

+
�bT

2�aT �bXpbX

Z
y dy faT (Q� y)

�
�(y;pb;Q) fbT (y) (115)

where faT is the elastic amplitude that is evaluated in the coherent approximation to the optical
model.
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For inelastic breakup we have
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where the �rst-order terms are given as
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and with the de�nitions

d�a

d
IN
=
X
X 6=0

j< Xa j bfaT (Q) j Ta > j
2 (118)

and

d�ab

d
IN
=
X
X 6=0

< aT jbf+
aT

(Q)jaX >< XbjbfbT (Q)jbT > (119)

Equation (118) is just the inclusive distribution for the reaction a + T ! a + X which
corresponds to equation (78) when the optical model is used. The cross section of equation (119)
is an interference e�ect that occurs when there are two virtual projectile clusters available
to fragment the target. At high energies we use an on-shell approximation to evaluate
equation (119) which is an extension of the optical model result in equation (78). Thus,

d�ab

d
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where


abT =
AaAbAT

(2�kNN)
2

Z
d2q d2q0 eiq�b e�iq0�b0

fNN(q)f
+
NN(q

0)Fa(q)Fb(q
0) G(q� q0) (121)

The higher order inelastic terms are numerous and include terms where both a and b excite
the target, only a single cluster excites the target with the second scattering elastically, and
the interference terms between the second-order and �rst-order terms that lead to identical �nal
target states. These terms must include both orderings for a scattering prior to b, and vice versa.

25



As an example of such processes, double scattering in which only one projectile cluster excites
the target nucleus is written as

jM
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where we have de�ned
d�

d
EL
(x;x0) = f(x) f+(x0) (123)

and
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4.3. Impulse Terms for Inclusive Deuteron Production

In an inclusive measurement the reactions in equations (91c) and (91d) are not distinguished.
The reaction in equation (91d) is more di�cult because of its four-body �nal state with at least

three relative motions needed to be considered. Also, the vertex function for 4He! npd has not
been evaluated. We estimate the energy spectra for equation (91b) by considering the impulse
terms for this reaction. Higher order scattering terms contribute largely as a normali zation
correction, and e�ecting the tails of these spectra will be considered elsewhere.

In �gure 18 we show the impulse terms for inclusive deuteron production. These terms are
written as

Tfi = �d(pd) TdX(Q) + �d(pd �Q) TdT (Q) + �dn(pd;pdX) TpX(Q)

+ �dp(pd;pdX) TnX(Q) + �np(pd;pnp) TdX(Q) (125)

where �d is the � ! dd vertex and �ij is the � ! dnp vertex. We approximate the �ij vertex
function by assuming that the weak binding of the deuteron is such that a correlated neutron-
proton pair in 4He closely resembles a deuteron cluster in the 4He ground state. We then assume
that Z

�dp(pd;pdp) dpdp � �d(pd) (126)

The calculation of the momentum distribution for inclusive deuteron production then closely
resembles the evaluation of the impulse terms for the two-body dissociation. We note that the
reactions in equations (91c) and (91d) are orthogonal in the projectile Hilbert space.
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Figure 18. Impulse diagrams for inclusive deuteron production.

4.4. Results for 4He Breakup

We �rst compare our results with experimental data for 1H targets where inelastic breakup
does not occur. In �gure 19 the angular distribution for 3He production in 1.02A GeV � particles
on 1H collisions is compared with the experimental data of Bizard et al. (ref. 49). Contributions
from various breakup terms are labeled on the �gure with the total (solid line) agreeing quite
well with experiment except at the largest angles.

In table 3 predictions of total production cross sections for 3He and 3H are compared with
experimental data from references 49{51. The data from Webber (ref. 50) are preliminary.
We note that Webber reports that �p < �3H; this cannot be correct because the mechanism

for producing 3H will always produce a proton, and several other mechanisms for producing
protons exist from equations (91). An error in distinguishing Z = 1 fragments is probably at
fault. Agreement between theory and experiment is satisfactory. Calculations were made with
�xed-energy NN parameters. This ambiguity in on-shell amplitudes will be most important at
lower energies (<500 MeV) and for light targets where slope parameters are more important, and
thus it should be studied in more detail. The absence of pion production in the model prevents
a realistic comparison much higher than 1A GeV for total cross sections. In table 4 predictions
are given for the production of 3He from 4He and for deuterons from 3He on several targets.
Vertex function parameters for 3He ! pd are estimated from Kok and Rinat (ref. 52). For
composite targets the higher order terms in equation (98) were not included because of the large
computational time required. The higher order terms are expected to increase in importance for
heavier targets and lower energies.

Calculations of the longitudinal momentum distribution for triton production at 1.9A GeV
are compared with experiment (ref. 22) in �gure 20. The dash-dot line is the plane-wave-
impulse approximation (PWIA) for proton knockout and clearly underestimates the data.
This discrepancy would be only partially resolved by using a wave function with higher
momentum components. The short dotted line and the dash-dot line are the impulse terms
with FSI for proton and triton exchange, respectively. Note that the �nal-state interaction
causes enhancement in the cross section at large momenta. This conclusion was also found
in reference 53 which used a Gaussian wave function and the Glauber model (ref. 54) for
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Figure 19. Angular distribution for �+1H! 3He at 1.02A GeV.

Table 3. Comparisons of Calculations With Experiments of Webber (ref. 50)
for A= 3 Fragment Production From 4He

[Calculations are given in parentheses]

(a) �+12C! AF

TLAB, A MeV �3H, mb �3He, mb

203.3 93:1� 9:3 (77.2) 60:4� 6:0 (79.3)

377.1 79� 7:9 (59.9) 66:9� 6:7 (60.9)

519.9 (62.1) 69:4� 6:9 (59.8)

(b) �+1H! AF

TLAB, A MeV �3He, mb

377.1 26:3� 2:6 (19.5)

519.9 26:4� 2:6 (20.8)

1025 24:1� 1:9 (22.5)

Table 4. Calculations of FragmentationCross Sections

for Light-Ion Breakup

(a) �+AT !
3He

Values of �3He, mb, for|

TLAB, A MeV 12C 16O 27Al

500 59.8 72.3 96.8

1000 64.1 74.7 100.1

(b) 3He+AT !
2H

Values of �2H, mb, for|

TLAB, A MeV 16O 27Al

500 158.0 211.2

1000 128.5 184.0
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1.05A GeV � particles. The o�-shell s-wave part of the FSI dominates this e�ect. Including the
Glauber amplitude for higher partial waves represents only about a 10-percent correction. The
inection in the dash-dot line near 0.2 GeV/c is caused by the interference between the s-wave
and Glauber terms. The solid line and the dashed line in �gure 20 are the sum of all terms with
and without the e�ects of interference between the diagrams, respectively. The full calculation
provides a good description of the data out to 0.4 GeV/c, but it underestimates at larger values.
The e�ects of interference between diagrams are clearly important.

In �gure 21, calculations of the transverse momentum distribution for a beam of energy of
2.09A GeV are compared with the experiment of Anderson et al. (refs. 55 and 56). Triton
exchange is seen to contribute only for small values of pT . The proton knockout term with
FSI provides a good representation of the data out to 0.6 GeV/c and falls below the data at
higher values. Calculations of pion production in deuteron breakup (ref. 57) suggest that we
should expect some contribution from this mechanism at large momentum. In �gures 22 and 23,
calculations of the transverse momentum distribution at 0.385 and 1.041A GeV, respectively,
are shown in comparison with data from references 56 and 57. The total calculation agrees well
with the experiment.
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Figure 20. Comparison of calculations of longitudi-

nal momentum distribution for 3H production in

��
12C collisions at 1.9A GeV with experimental

data (ref. 22). Dotted curve is proton exchange

term with FSI, dash-dot curve is triton exchange

with FSI, dashed-line curve is full calculation ne-
glecting interferencee�ects, and solid curve includes

interference.

Figure 21. Comparison of calculations of transverse

momentumdistributionfor 3Hproduction in ��12C

collisions at 2.09A GeV with experimental data.

The calculations in �gures 20{23 show that a PWIA extraction of the internal momentum
distribution is not possible in inclusive �-nucleus scattering. However, the agreement achieved
suggests that a reasonable wave function has been used because several scattering mechanisms
contribute and provide a strong constraint on model wave functions. The overlap function
employed in our calculations was also found to give good agreement to experiments for pion-
induced breakup at 5 GeV/c in reference 48. We also can conclude that a wave function with

a minimum below 0.5 GeV/c is not in agreement with the ��12C data (refs. 53 and 58).
The corrections to the impulse diagrams considered will not hide such a minimum and do
not appear in the data. In �gure 24, we compare the momentum distribution used here with
those extracted in coincidence measurements with 426 MeV electrons (ref. 59) and 500 MeV
protons (ref. 21). These experimental distributions will contain distortion e�ects peculiar to
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Figure 22. Comparison of calculations of transverse

momentumdistribution for 3Hproduction in��12C

collisions at 0.385A GeV with experimental data.

Figure 23. Comparison of calculations of transverse

momentumdistributionfor 3Hproduction in ��12C

collisions at 1.041A GeV with experimental data.
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Figure 25. Double-cluster scattering contributions to
3He production on 12C at 385A MeV.

the kinematics employed. Nevertheless, the comparison suggests a common shape out to about
0.4 GeV/c.

The contributions from the double-cluster scattering type of terms (eqs. (109){(112)) are

illustrated in �gures 25{26 for 3He production on 12C. The contribution from these rescattering
corrections is seen to be small in the longitudinal distribution; however they should increase in
importance at larger angles and for lower energies.

The momentum distribution for a deuteron pair in 4He was �t to the Monte Carlo calculations
of reference 10 as shown in �gure 27. Calculations are shown in �gures 28 and 29 with
contributions from the various impulse terms shown. A signi�cant contribution is seen for
elastic fragmentation at forward angles.
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Figure 27. Comparison of momentum distribution for

d{d in 4He Monte Carlo calculations of reference 10
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Figure 29. Inclusive d production in �{12C collisions at

2.09AGeV.

Overall, comparing our results with experimental data for 4He fragmentation is encouraging.
We can identify several areas that will lead to greater predictive capability. The inclusive
scattering model for cluster-target interactions should be extended to include charge exchange
which will become important below several hundred MeV/amu. Also, these distributions should
be extended to include pion production in order to make predictions at higher energies. Pion
absorption on alpha clusters (3He, 3H, and 2H) should then be studied. Final-state interaction

e�ects in 2H production must be included in order to make predictions of total-production
cross sections. A �rst attempt will consider just FSI between two fragments while summing
all contributions. Also, o�-shell e�ects in higher partial waves and spin-orbit coupling e�ects
on the FSI should be estimated. The two-body amplitudes employed should be improved for
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accuracy at large momentum transfers, especially for 1H targets, and should include nuclear
medium e�ects that will become important at lower energies. Finally, an improved treatment of
the many-body phase space for inelastic fragmentation would result from the use of equation (93)
with the distribution of equation (75) rather than the approximation of the three-body phase
space (eq. (94)) employed here.

5. Parametric Data Base

5.1. Interaction Cross Sections

We next discuss parameterizations of interaction cross sections and energy spectra for alpha
particles in common shielding materials. The work of Meyer (ref. 2) gives a complete summary

of ��1H cross sections based on measurements up to 1972. Parameterizations of 3H and 3He
production on 1H below 300 MeV/amu were discussed in reference 60. An extensive list of
earlier references of experiments is given in reference 2. More recent experiments are absorption
cross sections between 18 and 48 MeV in reference 61. In reference 62, deuteron production
at 1.4A GeV was measured with the inclusive deuteron production cross section reported at
30:64� 0:62 mb. Also, postdating the compilation by Meyer is the result for A = 3 fragments in
references 49 and 50. The most important shortcomings of the data base for 4He�1H interactions
are high-energy measurements above a few GeV and a complete absence of data for nucleon
production cross sections.

By using our theoretical estimates and the existing data, we parameterize the fragmentation
cross sections for 3He, 3H, and 2H production on 1H as
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and
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� 1

��
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0:21[(T=145)� 1]

1 + e(145�T )=6

�
e�T=3000 (129)

where Tth is the threshold energy for the breakup reaction listed in table 5 (ref. 63) and T is the
kinetic energy in units of A MeV. The low-energy behavior of equation (127) resembles that of
reference 60. The pickup cross section is parameterized as

�PICKUP = 48e�(T�Tth)
1:7=1350

(130)

and contributes to both the inclusive 3He and 2H production cross sections. At low energies
the resonance 5Li occurs which is not considered here. The parameterizations are compared
with experimental data in �gures 30{32. All cross sections are set constant above 3A GeV. The
energy variations near thresholds and the pion production region are accurately reproduced.
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Table 5. Thresholds and Q-Values for p+4He

Reaction Q, MeV Threshold, MeV

(a)
4He(p; d)3He �18:354 22.94
4He(p;2p)3He �19:815 24.77
4He(p;pn)3He �20:578 25.72
4He(p;pd)2H �23:848 29.81
4He(p;ppn)2H �26:072 32.59
4He(p;ppnn)1H �28:297 35.37

a
Data taken from references 60 and 63.
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Figure 31. Comparisonof parametricmodel for 3H pro-

duction in ��p collisions with experimental data.
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For the 1H target the absorption (ABS) cross section below 80 MeV is assumed as

�ABS = �3He + �3H + �2H + �PICKUP (131)

Above 80 MeV (and below 80 MeV for AT > 1), the energy-dependent parameterization of
Townsend and Wilson (ref. 64) is used which is given by

�ABS = 10� �(E)
h
R4He

+RAT
� 1:26 �(E)

i2
(132)

where

�(E) = 1 +
5

T

�(E) = 0:2 +
1

AP
+

1

AT
� 0:292e�T=792 cos(0:229T0:453)

(133)

with a normalization correction of 0.95 used for 1H and the argument of the cosine function given
in radians. In equation (132) the nuclear matter radii are used. The absorption cross section for

�+1H is shown in �gure 33 which presents an excellent reproduction of the experimental data.

The proton and neutron production are expected to rise dramatically above pion production
thresholds since two-body collisions will be predominantly inelastic leading to pion absorption
in the A = 3 or A = 2 clusters. Pion production has not been treated in our theoretical
considerations. However, the expected rise in proton and neutron cross sections occurs if we
simply balance the absorption cross section with channels that do not lead to proton and neutron
production, respectively, as shown in �gure 34.
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Figure 34. Parametric model predictions for proton

production and neutron production in �+1H

collisions.

The experimental data base for composite targets is extremely small. A comparison of
equation (132) with data for �+12C absorption cross sections is shown in �gure 35. Agreement
is excellent and previous analyses (ref. 63) suggest similar agreement for other targets. The
stripping reactions become more complicated for AT > 1 because several of these channels exist,
and stripping or pickup to excited states of the target contributes to the complication. We
follow Serber (ref. 25) and assume a surface reaction for nucleon stripping on 4He and then
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Figure 36. Comparison of �ts for 3H and 3He produc-

tion cross sections with experimental data.

equation (130) is scaled by A
1=3
T . Since 4He is its own mirror nuclei, we will ignore coulomb

e�ects and assume that equation (130) is used for both 3He and 3H production in stripping

reactions. Note that 3H is not produced in stripping on 1H. A slight overestimate may occur
because a small contribution from 3He exchange is expected in the reaction �+1H ! 3He+d.
We also ignore any d production in the stripping process for AT > 1. In �gure 36 the results for
3H and 3He production on 12C are shown. The fragmentation cross section is scaled as A0:31

T for
these fragments. The measurements are from Webber (ref. 50), and the data at 3.6A GeV are
from reference 65.

In table 6 we compare parametric �ts to secondary yields for charge fragments at 3.6A GeV
for several targets as measured in reference 65. The experiment of reference 65 measured
only peripheral events with detection angles less than 5�. We expect the measurements of
1H secondaries to be underestimates. The multiplicity for nucleon production from 4He at high
energies is between 1 and 1.2 as compared with a value of 2 assumed in existing cosmic ray
codes. For 2H we have used a scaling of A0:4

T from our parameterization in equation (129).

Table 6. Comparison of Experimental FragmentationCross Sections for 4He

Projectiles at 3.6A GeV With Model Fits

[Calculations are given in parentheses]

Values of �F , mb, for targets
a of|

Fragment Li C Al Cu
1H 166� 13 (536.6) 227� 20 (592.0) 319� 34 (823.9) 417� 45 (1294.9)
2H 84� 15 (68.2) 91� 27 (91.2) 113� 38 (128.2) 159� 45 (184.2)
3H 47� 5 (52.7) 58� 9 (65.4) 73� 20 (84.1) 95� 14 (109.9)
3He 48� 5 (48.1) 49� 8 (59.6) 70� 15 (76.7) 95� 20 (100.2)

aData were taken from reference 65 whichmeasured only particlesin peripheralevents (� � 5�).
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5.2. Secondary Energy Spectra

The energy spectra of secondary particles is expected to be governed by the internal
momentum distribution of the projectile nucleons with a weak dependence on target mass
number from dynamic e�ects. At low energies, kinematic restrictions limit the energy losses
possible beyond any restriction provided by the internal momentum distribution. The energy
spectra of secondaries from fragmentation is parameterized as

d�

dEF
=

r
2

�

�F
WF

exp
h
�(T � To + �F )

2=2W 2
F

i
(134)

where the width WF , downshift �F , and beam energy To are in units of A MeV. Values derived
from integrating the inclusive momentum distribution of equation (112) over all angles are given
in table 7 for several energies and targets. Comparisons of the �t provided by equation (134)
with calculations are shown in �gures 37{40 and are quite accurate. Note that the internal
motion of the projectile constituents leads to fragments produced with velocities higher than the
beam velocity.

Table 7. Spectrum Parameters for 4He Fragments

(a) A= 3 fragments

Target �, A MeV W , A MeV

500A MeV
1H 8.5 31.0
12C 9.0 30.0
16O 8.0 30.0
27AL 8.0 30.0

750AMeV
1H 8.5 35.0
12C 9.0 34.5
16O 8.5 34.0
27AL 8.0 34.0

1000A MeV
1H 9.0 41.0
12C 9.5 41.0
16O 8.0 42.0
27AL 8.0 42.0

(b) A = 1 fragment

Target �, A MeV W , A MeV

500AMeV
1H 9 58
12C 10 60
16O 10 60
27AL 10 65

750AMeV
1H 9 77
12C 10 77
16O 10 78
27AL 10 82

1000A MeV
1H 9 87
12C 10 88
16O 10 90
27AL 10 95

The energy spectrum of the elastically scattered alpha particles is parameterized using the
Born term of the optical model expansion that is normalized to the coherent model results
(ref. 66). A similar approach is followed to parameterize the quasi-elastic energy spectrum.
Assuming a Gaussian density matrix for the target gives (from eq. (76))

d�

dE
�0

= 2mNz�IN exp
�
�2mNz

�
! � �B1

��
�
�
! � �B1

�
(135)

where

z = R2
T

R
2
�

2 +B

R2
�

2 + B +R2
T

(136)
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Figure 37. Comparison of calculation of energy spec-

trum for 4He+12C ! 3H+X at 520A MeV with

Gaussian �t of equation (134).

Figure 38. Comparison of calculation of energy spec-

trum for 4He+16O ! 3H+X at 1000A MeV with

Gaussian �t of equation (134).
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Figure 39. Comparison of calculation of energy spec-

trum for 4He+27Al ! 3H+X at 1000A MeV with
Gaussian �t of equation (134).

Figure 40. Comparison of calculation of energy spec-

trum for 4He+1H ! 2H+X at 500A MeV with
Gaussian �t of equation (134).

with R� and RT denoting the matter radii of the alpha particle and target, respectively, and
B denoting the slope parameter. Equation (135) is expected to underestimate the spectrum
at large values of ! because of multiple scattering and perhaps pion production. In �gures 41
and 42, illustrations of the �t are shown.
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Figure 42. Parametric �ts to �+
16
O ! �+X reaction

at 100, 300, and 1000AMeV.

6. Concluding Remarks

An overview has been presented of calculations of interaction cross sections for high-energy
alpha particles colliding on nuclear targets. Models of elastic, quasi-elastic, and fragmentation
channels were described using multiple scattering theory in the impulse approximation. A
discussion of future theoretical emphasis was given with pion production at high energies
and nuclear medium e�ects at low energies identi�ed as the principal areas of future work.
Extensive comparisons were made with existing experimental data for high-energy alpha particles
interacting with nuclear targets, and good agreement was found. Parametric energy-dependent
interaction cross sections and energy spectra are presented and discussed.

NASA Langley Research Center

Hampton, VA 23681-0001

December 11, 1992
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